Teaching information
Instructor: 杜佳宾(Jiabin DU)
Email: jiabin.du@simis.cn
Office: SIMIS 1619
Course information:
Course time: every Wednesday 10:00-11:45 a.m., at SIMIS 1210
Pre-requisite Courses
Modern Algebra, Commutative Algebra and Topology
Syllabus
Week 1-8
Goal: Basics on algebraic varieties (介绍代数簇的基本概念):
- Affine and projective varieties (仿射和射影代数簇)
- Projective plane curves (射影平面曲线)
- Varieties, morphisms and rational maps (代数簇,态射和有理映射)
- Resolution of singularities (奇异曲线的奇点消解)
Week 9-12
Goal: Riemann-Roch Theorem (介绍复曲线的 Riemann-Roch 定理):
- Divisors and vector bundles on curves (除子和向量丛)
- Cohomology (上同调)
- Serre duality, Riemann-Roch Theorem and Riemann-Hurwitz formula
Week 13-15
Goal: Geometry of projective curves (介绍复射影曲线的几何):
- Embeddings into projective space and canonical maps (到射影空间的嵌入、典范映射)
- Embeddings into abelian variety and Albanese morphisms (到阿贝尔簇的嵌入、Albanese 态射)
- Clifford inequality and Castelnuovo inequality
- *Brill-Noether theory (Brill-Noether 理论)
References:
- Algebraic Curves , W. Fulton; 2008
- Algebraic Geometry , Robin Hartshorne; Springer; 1977
- Geometry of algebraic curves I, Arbarello-Cornalba-Griffiths-Harris;1985
- Algebraic Geometry I: algebraic curves, algebraic manifolds and schemes ,I.R. Shafarevich (Ed.); 1994
Back to Home